Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase.
نویسندگان
چکیده
Escherichia coli apomanganese superoxide dismutase, prepared by removing the native metal ion under denaturing conditions, exhibits thermally triggered metal uptake behavior previously observed for thermophilic and hyperthermophilic superoxide dismutases but over a lower temperature range. Differential scanning calorimetry of aposuperoxide dismutase and metalated superoxide dismutase unfolding transitions has provided quantitative estimates of the metal binding affinities for manganese superoxide dismutase. The binding constant for Mn(II) (K(Mn(II)) = 3.2 x 10(8) m(-1)) is surprisingly low in light of the essentially irreversible metal binding characteristic of this family of proteins and indicates that metal binding and release processes are dominated by kinetic, rather than thermodynamic, constraints. The kinetic stability of the metalloprotein complex can be traced to stabilization by elements of the protein that are independent of the presence or absence of the metal ion reflected in the thermally triggered metalation characteristic of these proteins. Binding constants for Mn(III), Fe(II), and Fe(III) complexes were estimated using quasireversible values for the unfolding enthalpy and DeltaC(p) for apo-Mn superoxide dismutase and the observed T(m) values for unfolding the metalated species in the absence of denaturants. For manganese and iron complexes, an oxidation state-dependent binding affinity reflects the protein perturbation of the metal redox potential.
منابع مشابه
The irony of manganese superoxide dismutase.
The manganese and iron SODs (superoxide dismutases) form a superfamily of closely related antioxidant defence metalloenzymes. MnSOD requires Mn (not Fe) for activity. However, when MnSOD is expressed in Escherichia coli grown in medium supplemented with ferrous salts, Fe substitutes for Mn in the active site, reflecting relatively indiscriminate uptake of either Mn or Fe and a surprisingly low ...
متن کاملComparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملA glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase.
In Escherichia coli manganese superoxide dismutase (MnSOD), the absolutely conserved Glu170 of one monomer is hydrogen-bonded to the Mn ligand His171 of the other monomer, forming a double bridge at the dimer interface. Point mutation of Glu170 --> Ala destabilizes the dimer structure, and the mutant protein occurs as a mixture of dimer and monomer species. The purified E170A MnSOD contains exc...
متن کاملInduction of manganese-containing superoxide dismutase in anaerobic Escherichia coli by diamide and 1,10-phenanthroline: sites of transcriptional regulation.
Transcriptional regulation of the sodA gene, a member of the soxRS regulon encoding the manganese-containing superoxide dismutase (MnSOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) of Escherichia coli, was examined in a variety of regulatory mutants. Diamide, an oxidant that causes the anaerobic biosynthesis of the MnSOD polypeptide and also facilitates insertion of manganese at the act...
متن کاملManganese and iron superoxide dismutases are structural homologs.
The crystal structure of a tetrameric manganese superoxide dismutase from a thermophilic bacterium, Thermus thermophilus HB8, has been determined at 4.4-A resolution by local averaging of electron density maps calculated by isomorphous replacement. The spatial arrangement of the principal secondary structural features of iron superoxide dismutase is conserved in manganese dismutase. The structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 26 شماره
صفحات -
تاریخ انتشار 2004